Skip to contents
-
AUPEC()
- Estimation of the Area Under Prescription Evaluation Curve (AUPEC) in Randomized Experiments
-
AUPECcv()
- Estimation of the Area Under Prescription Evaluation Curve (AUPEC) in Randomized Experiments Under Cross Validation
-
GATE()
- Estimation of the Grouped Average Treatment Effects (GATEs) in Randomized Experiments
-
GATEcv()
- Estimation of the Grouped Average Treatment Effects (GATEs) in Randomized Experiments Under Cross Validation
-
PAPD()
- Estimation of the Population Average Prescription Difference in Randomized Experiments
-
PAPDcv()
- Estimation of the Population Average Prescription Difference in Randomized Experiments Under Cross Validation
-
PAPE()
- Estimation of the Population Average Prescription Effect in Randomized Experiments
-
PAPEcv()
- Estimation of the Population Average Prescription Effect in Randomized Experiments Under Cross Validation
-
PAV()
- Estimation of the Population Average Value in Randomized Experiments
-
PAVcv()
- Estimation of the Population Average Value in Randomized Experiments Under Cross Validation
-
compute_qoi()
- Compute Quantities of Interest (PAPE, PAPEp, PAPDp, AUPEC, GATE, GATEcv)
-
compute_qoi_user()
- Compute Quantities of Interest (PAPE, PAPEp, PAPDp, AUPEC, GATE, GATEcv) with user defined functions
-
consist.test()
- The Consistency Test for Grouped Average Treatment Effects (GATEs) in Randomized Experiments
-
consistcv.test()
- The Consistency Test for Grouped Average Treatment Effects (GATEs) under Cross Validation in Randomized Experiments
-
create_ml_args()
- Create general arguments
-
create_ml_args_bart()
- Create arguments for bartMachine
-
create_ml_args_bartc()
- Create arguments for bartCause
-
create_ml_args_causalforest()
- Create arguments for causal forest
-
create_ml_args_lasso()
- Create arguments for LASSO
-
create_ml_args_svm()
- Create arguments for SVM
-
create_ml_args_svm_cls()
- Create arguments for SVM classification
-
create_ml_arguments()
- Create arguments for ML algorithms
-
estimate_itr()
- Estimate individual treatment rules (ITR)
-
evaluate_itr()
- Evaluate ITR
-
het.test()
- The Heterogeneity Test for Grouped Average Treatment Effects (GATEs) in Randomized Experiments
-
hetcv.test()
- The Heterogeneity Test for Grouped Average Treatment Effects (GATEs) under Cross Validation in Randomized Experiments
-
itr_single_outcome()
- Evaluate ITR for Single Outcome
-
plot(<itr>)
- Plot the AUPEC curve
-
print(<summary.itr>)
- Print
-
print(<summary.test_itr>)
- Print
-
star
- Tennessee’s Student/Teacher Achievement Ratio (STAR) project
-
summary(<itr>)
- Summarize estimate_itr output
-
summary(<test_itr>)
- Summarize test_itr output
-
test_itr()
- Conduct hypothesis tests